РАССМОТРЕНО УТВЕРЖДЕНО методическим объединением учителей Директором МКОУ "Талицкая СОШ № 4" ________________________ ________________________ Протокол № 1 от «31» августа 2023 г. Н.И. Волкова Приказ № 3108-2о от «31» августа 2023 г. РАБОЧАЯ ПРОГРАММА учебного курса «Избранные вопросы математики» для обучающихся 9 классов Талица 2023 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА В структуре программы учебного курса «Избранные вопросы математики» для основного общего образования основное место занимают содержательно-методические линии: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции» и «Геометрия». Каждая из этих содержательно-методических линий развивается, взаимодействуя с другими его линиями. В ходе изучения учебного курса обучающимся приходится логически рассуждать, использовать теоретико-множественный язык. Содержание линии «Числа и вычисления» служит основой для изучения математики, способствует развитию у обучающихся логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых для повседневной жизни. Развитие понятия о числе на уровне основного общего образования связано с рациональными и иррациональными числами, формированием представлений о действительном числе. Завершение освоения числовой линии отнесено к среднему общему образованию. Содержание двух алгебраических линий – «Алгебраические выражения» и «Уравнения и неравенства» способствует формированию у обучающихся математического аппарата, необходимого для решения задач математики, смежных предметов и практико-ориентированных задач. На уровне основного общего образования учебный материал группируется вокруг рациональных выражений. Алгебра демонстрирует значение математики как языка для построения математических моделей, описания процессов и явлений реального мира. В задачи обучения алгебре входят также дальнейшее развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений. Преобразование символьных форм способствует развитию воображения, способностей к математическому творчеству. Содержание функционально-графической линии нацелено на получение обучающимися знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов и явлений в природе и обществе. Изучение материала способствует развитию у обучающихся умения использовать различные выразительные средства языка математики – словесные, символические, графические, вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры. Целью изучения геометрии является использование её как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Обучающийся должен научиться определить геометрическую фигуру, описать словами данный чертёж или рисунок, найти площадь земельного участка, рассчитать необходимую длину оптоволоконного кабеля или требуемые размеры гаража для автомобиля. При решении задач практического характера обучающийся учится строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. На изучение учебного курса «Избранные вопросы математики» отводится 18 часов (0,5 часа в неделю) в 9 классе. СОДЕРЖАНИЕ ОБУЧЕНИЯ Числа и вычисления Рациональные числа, иррациональные числа, конечные и бесконечные десятичные дроби. Множество действительных чисел, действительные числа как бесконечные десятичные дроби. Взаимно однозначное соответствие между множеством действительных чисел и координатной прямой. Сравнение действительных чисел, арифметические действия с действительными числами. Размеры объектов окружающего мира, длительность процессов в окружающем мире. Приближённое значение величины, точность приближения. Округление чисел. Прикидка и оценка результатов вычислений. Уравнения и неравенства Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнение. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвёртой степеней разложением на множители. Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим методом. Уравнение с двумя переменными и его график. Решение систем двух линейных уравнений с двумя переменными. Решение систем двух уравнений, одно из которых линейное, а другое – второй степени. Графическая интерпретация системы уравнений с двумя переменными. Решение текстовых задач алгебраическим способом. Числовые неравенства и их свойства. Решение линейных неравенств с одной переменной. Решение систем линейных неравенств с одной переменной. Квадратные неравенства. Графическая интерпретация неравенств и систем неравенств с двумя переменными. Функции Квадратичная функция, её график и свойства. Парабола, координаты вершины параболы, ось симметрии параболы. Графики функций: y = kx, y = kx + b, у = ах2 + bx + c, y = k/x, y = x3, y = √x, y = |x| , и их свойства. Числовые последовательности и прогрессии Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками на координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты. Геометрия Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Ломаная, многоугольник. Параллельность и перпендикулярность прямых. Треугольник. Высота, медиана, биссектриса, их свойства. Равнобедренный и равносторонний треугольники. Свойства и признаки равнобедренного треугольника. Свойства и признаки параллельных прямых. Сумма углов треугольника. Внешние углы треугольника. Прямоугольный треугольник. Свойство медианы прямоугольного треугольника, проведённой к гипотенузе. Прямоугольный треугольник с углом в 30°. Окружность и круг, хорда и диаметр, их свойства. Взаимное расположение окружности и прямой. Касательная и секущая к окружности. Окружность, вписанная в угол. Вписанная и описанная окружности треугольника. Четырёхугольники. Параллелограмм, его признаки и свойства. Частные случаи параллелограммов (прямоугольник, ромб, квадрат), их признаки и свойства. Трапеция, равнобокая трапеция, её свойства и признаки. Прямоугольная трапеция. Средние линии треугольника и трапеции. Подобие треугольников. Применение подобия при решении практических задач. Свойства площадей геометрических фигур. Формулы для площади треугольника, параллелограмма, ромба и трапеции. Отношение площадей подобных фигур. Вычисление площадей треугольников и многоугольников на клетчатой бумаге. Теорема Пифагора. Применение теоремы Пифагора при решении практических задач. Синус, косинус, тангенс острого угла прямоугольного треугольника. Основное тригонометрическое тождество. Тригонометрические функции углов в 30, 45 и 60°. Вписанные и центральные углы, угол между касательной и хордой. Углы между хордами и секущими. Вписанные и описанные четырёхугольники. Взаимное расположение двух окружностей. Касание окружностей. Общие касательные к двум окружностям. Синус, косинус, тангенс углов от 0 до 180°. Основное тригонометрическое тождество. Формулы приведения. Решение треугольников. Теорема косинусов и теорема синусов. Решение практических задач с использованием теоремы косинусов и теоремы синусов. Вектор, длина (модуль) вектора, сонаправленные векторы, противоположно направленные векторы, коллинеарность векторов, равенство векторов, операции над векторами. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов, применение для нахождения длин и углов. Правильные многоугольники. Длина окружности. Градусная и радианная мера угла, вычисление длин дуг окружностей. Площадь круга, сектора, сегмента. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОГО КУРСА «Избранные вопросы математики» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ Личностные результаты освоения программы учебного курса «Избранные вопросы математики» характеризуются: 1) патриотическое воспитание: проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах; 2) гражданское и духовно-нравственное воспитание: готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (например, выборы, опросы), готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного; 3) трудовое воспитание: установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений, осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей; 4) эстетическое воспитание: способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений, умению видеть математические закономерности в искусстве; 5) ценности научного познания: ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладением языком математики и математической культурой как средством познания мира, овладением простейшими навыками исследовательской деятельности; 6) физическое воспитание, формирование культуры здоровья и эмоционального благополучия: готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека; 7) экологическое воспитание: ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды, осознанием глобального характера экологических проблем и путей их решения; 8) адаптация к изменяющимся условиям социальной и природной среды: готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других; необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие; способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Познавательные универсальные учебные действия Базовые логические действия: выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа; воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий; делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии; разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные рассуждения; выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев). Базовые исследовательские действия: использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение; проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой; самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений; прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях. Работа с информацией: выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи; выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления; выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями; оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно. Коммуникативные универсальные учебные действия: воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения; представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории; понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей; участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и другие), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия. Регулятивные универсальные учебные действия Самоорганизация: самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации. Самоконтроль, эмоциональный интеллект: владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи; предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей; оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ К концу обучения в 9 классе обучающийся получит следующие предметные результаты: Числа и вычисления Сравнивать и упорядочивать рациональные и иррациональные числа. Выполнять арифметические действия с рациональными числами, сочетая устные и письменные приёмы, выполнять вычисления с иррациональными числами. Находить значения степеней с целыми показателями и корней, вычислять значения числовых выражений. Округлять действительные числа, выполнять прикидку результата вычислений, оценку числовых выражений. Уравнения и неравенства Решать линейные и квадратные уравнения, уравнения, сводящиеся к ним, простейшие дробно-рациональные уравнения. Решать системы двух линейных уравнений с двумя переменными и системы двух уравнений, в которых одно уравнение не является линейным. Решать текстовые задачи алгебраическим способом с помощью составления уравнения или системы двух уравнений с двумя переменными. Проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений (устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько, и прочее). Решать линейные неравенства, квадратные неравенства, изображать решение неравенств на числовой прямой, записывать решение с помощью символов. Решать системы линейных неравенств, системы неравенств, включающие квадратное неравенство, изображать решение системы неравенств на числовой прямой, записывать решение с помощью символов. Использовать неравенства при решении различных задач. Функции Распознавать функции изученных видов. Показывать схематически расположение на координатной плоскости графиков функций вида: y = kx, y = kx + b, y = k/x, y = ax2 + bx + c, y = x3, y = √x, y = |x|, в зависимости от значений коэффициентов, описывать свойства функций. Строить и изображать схематически графики квадратичных функций, описывать свойства квадратичных функций по их графикам. Распознавать квадратичную функцию по формуле, приводить примеры квадратичных функций из реальной жизни, физики, геометрии. Числовые последовательности и прогрессии Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выполнять вычисления с использованием формул n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображать члены последовательности точками на координатной плоскости. Решать задачи, связанные с числовыми последовательностями, в том числе задачи из реальной жизни (с использованием калькулятора, цифровых технологий). Геометрия Распознавать изученные геометрические фигуры, определять их взаимное расположение, изображать геометрические фигуры, выполнять чертежи по условию задачи. Измерять линейные и угловые величины. Решать задачи на вычисление длин отрезков и величин углов. Делать грубую оценку линейных и угловых величин предметов в реальной жизни, размеров природных объектов. Различать размеры этих объектов по порядку величины. Строить чертежи к геометрическим задачам. Распознавать основные виды четырёхугольников, их элементы, пользоваться их свойствами при решении геометрических задач. Пользоваться теоремой Пифагора для решения геометрических и практических задач. Строить математическую модель в практических задачах, самостоятельно делать чертёж и находить соответствующие длины. Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника. Пользоваться этими понятиями для решения практических задач. Вычислять (различными способами) площадь треугольника и площади многоугольных фигур (пользуясь, где необходимо, калькулятором). Применять полученные умения в практических задачах. Применять полученные знания на практике – строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрических функций. ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 9 КЛАСС Количество часов № п/п Тема урока Всего 1 Дроби и степени 1 2 Числа, координатная прямая 1 3 Квадратные корни и степени 1 4 Квадратные корни и степени 1 5 Решение линейных уравнений 1 6 Решение квадратных уравнений 1 7 Графики функций 1 8 Расчеты по формулам 1 9 Решение систем неравенств 1 10 Решение квадратных неравенств 1 11 Треугольники 1 12 Треугольники 1 13 Четырехугольники 1 14 Четырехугольник 1 15 Фигуры на квадратной решётке 1 16 Анализ геометрических высказываний 1 17 Задание 01-05.Задачи с практическим содержанием 1 18 Задание 01-05.Задачи с практическим содержанием 1 ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ 18 Контрольные работы Практические работы 0 0 УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА • Алгебра, 8 класс/ Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и другие, Акционерное общество «Издательство «Просвещение» • Алгебра, 9 класс/ Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и другие, Акционерное общество «Издательство «Просвещение» • Геометрия, 7-9 классы/ Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и другие, Акционерное общество «Издательство «Просвещение» МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ